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ABSTRACT
We present mobileVision – a portable, robust, smartphone-
based ophthalmoscopy prototype intended to reduce the bar-
riers to ocular pathology screening in developing and un-
derserved regions. In contrast to currently available reti-
nal imaging solutions, mobileVision provides the portabil-
ity of a handheld ophthalmoscope without sacrificing retinal
field-of-view or resolution. Through tight integration with
a smartphone and ergonomic design, we demonstrate novel
features for such a small form factor, including: automatic
compensation for patient refractive error, voice-activated
multi-shot retinal image acquisition without pupil dilation
(non-mydriatic), and touch-gesture based control of patient
fixation and accommodation. We further demonstrate a
computational lucky imaging and retinal stitching pipeline
which not only increases overall retinal field-of-view, but also
makes the system robust to patient saccades, blinks, device
jitter, and imaging artifacts such as noise or unintended scat-
tering from ocular surfaces. We estimate through mock eye
tests that the mobileVision prototype is capable of imaging
the retina with 23.5µm of retinal resolution for patients with
between −6 D to +13 D refractive error, and we image over
±45◦ of retina during an in vivo trial.

General Terms
Algorithms, Design

1. INTRODUCTION
Ocular health assessment is key to monitoring not only

eye-related problems like glaucoma, cataracts, macular de-
generation and refractive errors, but also many other chronic
and systemic diseases such as diabetes, hypertension and
neurological degeneration, all of which also impact vision.
The eye is the only place where we can directly image inter-
nal tissue, like blood vessels, with a non-invasive procedure,
making it particularly suitable for regular screening. How-
ever, while ocular imaging has advanced technically, oph-
thalmoscopy is still largely confined to clinical settings by
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Figure 1: (a) IR Confocal Scanning Laser Ophthal-
moscope (Heidelberg Spectralis HRA+OCT). (b)
Green channel of mobileVision panorama, cropped
and registered. Line scans show pixel values scaled
by maximum and minimum values along the line,
demonstrating faithful reproduction of vasculature.

design: bulky fundus cameras, which may be easy to oper-
ate, are difficult to transport and costly; handheld ophthal-
moscopes, which are portable and low cost, require expert
skill and dexterity for proper use. The realities of decen-
tralized healthcare delivery in developing and underserved
regions – poor infrastructure, low physician to patient ra-
tios, the need for remote diagnosis – make screening using
existing devices difficult or impractical.

Our goal is to design an ophthalmoscopy system which can
be carried by a health care worker to remote screening sites,
quickly and easily setup, reliably used to acquire retinal im-
ages, packed up, and carried away. When Internet access
is available, the images can then be wirelessly transferred
to physicians for remote review. We seek to combine the
performance [14] and utility [9] of table-top, non-mydriatic
fundus cameras with the portability of handheld ophthalmo-
scopes, without requiring an expert operator.



1.1 Technical Challenges
Imaging a wide retinal field-of-view requires delivering and

capturing light over a wide angle, which ordinarily leads
to use of large optics. Furthermore, wide angle imaging
without pupil dilation requires precise alignment between
the system and the patient’s eye, since the pupil constricts
as soon as the retina is illuminated.

The need for precise alignment ordinarily sacrifices porta-
bility, however, as devices quickly become bulky and table
mounted. In the case of mobile screening, the system must
be lightweight and compact.

Finally, to not require an expert operator, the system
must be easy to interact with and robust to operator er-
ror. Patient refractive error should be compensated for with-
out operator interaction. Alignment should be intuitive and
fault tolerant.

1.2 Contributions
We address the technical challenges of mobile retinal screen-

ing through the mobileVision prototype: a system compris-
ing opto-mechanics, a smartphone with support electronics,
and computational imaging algorithms. Specifically:

• We design, fabricate, and test a compact, face-mounted
indirect ophthalmoscope with integrated wide-angle fix-
ation and accommodation stimuli, which is battery
powered; portable; voice or touch controlled; aligned
to the patient’s eye using translation knobs; and uses a
smartphone to acquire images, compensate for patient
refractive error, and guide the operator.

• We design and implement a robust blood-vessel matched
filter response based retinal image registration tech-
nique which, by using scale invariant features, can op-
erate reliably on small, minimally overlapping retinal
fields in the presence of imaging artifacts, varying illu-
mination, and image noise.

• We design and implement a multi-shot lucky imag-
ing approach to retinal imaging which is capable of
reducing retinal image noise while maintaining detail
and automatically rejecting patient blinks, saccades,
or other unwanted imaging artifacts.

• We design and implement a metric based, gradient-
domain approach to retinal image stitching which is
capable of avoiding imaging artifacts, without intro-
ducing color artifacts or visible seams.

The mobileVision prototype demonstrates for the first time
an end-to-end computational ophthalmoscopy system capa-
ble of imaging the retina with resolution and field-of-view
comparable to clinically relevant imaging modalities (fun-
dus photography, scanning laser ophthalmoscopy), while re-
maining portable and user-friendly.

1.3 Related Work

1.3.1 Remote Ophthalmology
Groups such as Chen et al. [9] have demonstrated the

utility of temporary eye clinics equipped with high-end tools
(e.g. Canon±35◦ CR6-45 non-mydriatic digital fundus cam-
era) in remote areas for tele-ophthalmology. However, the
purchase, delivery, and maintenance of such tools can be
difficult and costly. These problems have inspired both us

and others to create devices tailor-made for remote ophthal-
mology: at the time of writing, PeekVision is developing
a smartphone based eye evaluation system which includes
what appears to be a direct ophthalmoscope attachment for
a smartphone; Forus Health’s 3nethra is an eye pre-screening
imaging tool, in the form of a multi-purpose table-top fun-
dus camera; and EyeNetra’s NetraG is a smartphone attach-
ment for measuring patient refractive error. Such systems
are tightly integrated, portable, and wirelessly connected to
the Internet - all requirements for the effective and efficient
delivery of remote ophthalmology.

1.3.2 Computational Ophthalmoscopes
In our prior work we demonstrated a table-top, Internet

protocol camera turned ophthalmoscope, with minimal post-
processing [16]. We now extend upon that work by making
a smartphone the core of a complete computational imag-
ing system, including algorithms. Lawson et al. [12] and
Boggess [5] demonstrated a computational direct ophthal-
moscope in which light is shone into the patient’s sclera,
rather than through the pupil. They use a computational
pipeline to compensate for light loss and form images.

1.3.3 Retinal Stitching
A rich body of work exists for finding transformations

from one retinal view to another, and combining the unified
views. The work most similar to our own are those which
base this process on finding scale invariant features [21] or
blood-vessel crossover points [7]. We extend these concepts
for stitching smaller fields by using scale invariant features
from matched filter responses.

2. MOBILEVISION SYSTEM DESIGN
The mobileVision retinal imaging system has three parts.

Section 2.1, Opto-mechanics, describes how light is deliv-
ered to and collected from the patient’s retina at different
field locations. Section 2.2, Smartphone and Electronics, de-
scribes how the smartphone and support electronics enable
robust image acquisition while providing a simple, unified
interface to the operator. Section 2.3, Retinal Image Post-
Processing, describes how input images gathered from the
smartphone are processed in order to reduce noise, increase
image quality, and increase overall field-of-view.

Before detailing individual system components, we illus-
trate how the system works at a high-level by describing
a prototypical retinal imaging session using mobileVision.
Looking into the device shown in Figure 2, the patient’s
right eye will be imaged while the left eye views a fixation
assembly. Viewing the fixation stimuli induces controllable
rotation and accommodation of both eyes, allowing differ-
ent retinal fields to be imaged. The operator uses knobs to
translate the imaging optics and follow the patient’s eye as it
rotates to different positions. When the system is aligned,
the operator says “snap,”(or presses the on-screen shutter
button) to capture a series of consecutive retinal snapshots.
The alignment and image capture process is then repeated
for each of the available fixation positions. When finished
imaging one eye, the entire apparatus is flipped over and
the image acquisition process is repeated again to image the
patient’s other eye. Images are stored digitally on the phone
when acquired, and are then post-processed and ready to be
sent for physician review.
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Figure 2: Mechanical system design. The imaging
optics and phone translate jointly with respect to
the fixation assembly. Knobs drive leadscrews to
effect this translation. The faceplate (with straps)
fixes the apparatus to the patient. The entire appa-
ratus is flipped over so both eyes can be imaged.

2.1 Opto-mechanics

2.1.1 Imaging the Retina
The optical design is summarized in Figure 3. The imag-

ing branch, an indirect ophthalmoscope,1 is shown for the
bottom eye. Light from a white LED is projected into a 1mm
diameter homogenizing optical fiber. The fiber tip is then
focused and linearly polarized before bouncing off an off-
axis mirror just outside the cone visible to the camera. The
reflection from this mirror is focused by the main imaging
lens, and enters the patient’s undilated pupil. The patient’s
eye defocuses the incoming light (because the fiber is conju-
gated nearly to patient’s pupil), and in doing so ≈ ±25◦ of
retina is illuminated by polarized light.2

Light which reaches the retina undergoes diffuse reflec-
tion and loses its polarization state. However, light which
undergoes specular reflection off of the patient’s cornea or
lens or other surfaces maintains its polarization state. This

1We repurposed components from a WelchAllyn Panoptic
indirect ophthalmoscope to build this prototype.
2The described retinal illumination system was designed in
accordance with ICNIRP broadband exposure limit guide-
lines [15].
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Figure 3: Optical system design. Infinite conju-
gate fixation (top eye) is used to guide the patient’s
gaze and accommodation for indirect retinal imaging
(bottom eye). Patient aberration is compensated by
the smartphone’s built-in autofocus.

unwanted glare is removed by linearly polarizing all of the
imaged light with a polarization axis orthogonal to that used
in the illumination beam. The imaging optics create a nearly
infinite conjugate image of the patient’s retina, which is fi-
nally imaged by a smartphone.3 We built this prototype to
fit around a Samsung Nexus S smartphone.

2.1.2 Guiding the Eyes
While one of the patient’s eyes is being imaged, the other

eye views a fixation assembly, shown in Figures 2 and 3.
The straps and faceplate of the device ensure this fixation
assembly remains fixed relative to the patient’s face for a
given imaging session.

The fixation assembly is composed of 7 individual fixation
tubes arranged about the eye’s center of rotation. Each of
the peripheral tubes is designed to induce a 30◦ rotation of
the eye from the central position, exposing a new retinal
region for imaging. Each tube comprises a single-element
projector.4 Only one of these tubes is illuminated at a time.

As the patient views each tube, his or her eyes naturally
accommodate towards infinity. Although only one eye is
presented with the fixation stimulus, both eyes rotate and
accommodate in unison [4]. As a result, the patient’s own
accommodation response “pre-focuses” his or her eyes to
be imaged, while simultaneously stabilizing eye orientation.
Remaining defocus from refractive error is corrected by the
smartphone’s built-in autofocus.

2.1.3 Eye-Camera Pupil Matching
For each eye position, a delicate alignment between the

patient’s eye and the imaging optics needs to be established

3This design can accept any camera which can be pupil
matched to the retinal imaging optics, which have an eye
relief of about 10 mm. In practice, smartphone camera mod-
ules are typically only a few mm thick and have entrance
pupils located within their enclosures, so nearly any smart-
phone will work optically.
4Each projects an infinite conjugate image of an LED back-
lit grid pattern out towards the patient’s eye, using a 3/8”
diameter plastic ball-lens.
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Figure 4: Android application. A live retinal video
feed is shown in the center. Saying “snap” triggers
10 consecutive, full resolution snapshots. Autofocus
is performed independently for each. Swiping across
the screen cycles through fixation target positions.

and maintained. This alignment is enabled by mechanically
coupling the device to the patient’s face with the faceplate
and straps shown in Figure 2. The operator then rotates
positioning knobs which smoothly translate the imaging as-
sembly so that the retina can be found. Camera tripod
mounting points are integrated into the frame (top and bot-
tom) to further stabilize the system during prolonged use.

2.2 Smartphone and Electronics

2.2.1 Android Application
The bundled smartphone application is designed to make

operation of the system as seamless and intuitive as possi-
ble. The user interface, shown in Figure 4, is functional yet
approachable and visually similar to generic camera apps.

When the imaging optics are aligned with the patient’s
eye for a given fixation position and retina is visible on the
smartphone, the operator triggers a sequence of 10 consec-
utive snapshots, either by touch-free “snap” voice command
or by tapping an on-screen shutter button. Using repeated
camera snapshot acquisitions rather than a continuous video
acquisition allowed for image capture at the smartphone’s
full sensor resolution as well as for individual autofocus for
each image acquired.

Voice control was implemented using CMU Sphinx’s open-
source speech recognition Android API [18]. A key feature
of this API is off-line speech recognition: the operator need
not be connected to the Internet at exam time because the
command dictionary and recognition code are all stored lo-
cally on the smartphone when the app is installed. The
command word “snap” was chosen for its simplicity and ease
of recall. Voice control can be quickly enabled/disabled by
tapping the on-screen voice toggle (useful to prevent image
acquisition while talking).

The operator controls the current fixation position by per-
forming a swiping gesture right or left across the screen.
This increments or decrements, respectively, the fixation po-
sition, which cycles through all 7 positions. A display of the
current position is shown at all times. This display ensures
that all positions are used for imaging, and also helps orient
the operator when performing pupil alignment.

(a) Smartphone inputs. (b) Fused view.

Figure 5: Multi-shot lucky fusing. Blurred or poorly
exposed snapshots are rejected (red ×’s). Noise is
reduced without sacrificing details (left insets). Ar-
tifacts are mitigated, exposing new details (right in-
sets).

The retinal illumination can be cycled on/off/auto by tap-
ping the on-screen illumination toggle. In automatic mode
the illumination is on only while focusing and exposing the
smartphone camera.

2.2.2 Support Electronics
External circuitry necessary to drive the retinal illumina-

tion LED and fixation targets was designed and prototyped.
A microprocessor (MSP430F5437) running a finite state ma-
chine and a Bluetooth 2.1 radio (RN-42) were included to
enable wireless smartphone control. This circuitry is pow-
ered by 2×AAA batteries. Ni-MH rechargeable batteries
can be used and recharged in-place (LTC-4060) through the
included Micro-AB USB connector. The device can there-
fore charge itself with any smartphone Micro USB charger.

2.3 Retinal Image Post-Processing
The input images from the smartphone need to be en-

hanced and stitched to generate a retinal panorama. Sec-
tion 2.3.1, Multi-shot Lucky Retinal Fusing, describes how
by fusing many images of the same field, we obtain an en-
hanced retinal view which is better exposed, has less noise,
and has less detrimental artifacts than any of the original
images. Section 2.3.2, Seamless Retinal Field Stitching, de-
scribes how the enhanced views obtained from different fix-
ation positions are then stitched together to increase overall
field-of-view.

2.3.1 Multi-shot Lucky Retinal Fusing
An example 1474× 1501 px, 24-bit input image is shown

in Figure 5(a). Although arguably the best from the set of
images for that view, it still suffers from degradation due
to noise as well as artifacts due to scattered light off the
patient’s eye. Inspired by lucky imaging for astronomy [19],
we reject poor quality images, register the remaining images
to one another, and adaptively fuse the resulting stack to
generate a superior quality image of the given retinal field.

Registration. We first attempt to align the images to
one another using retinal blood vessels as guides. We apply
blood vessel based matched filtering to the green channel
of the RGB input images using the technique described by



Chaudhuri et al. [8]. The parameters of the matched filters
were chosen based on the sizes of visible blood vessels in
our acquired retinal images. This produces a matched fil-
ter response, some examples of which are shown in Figure
6(a). We perform local feature extraction on the matched
filter responses using VLFeat’s implementation [20] of the
Scale Invariant Feature Transform (SIFT) [13]. We then
use Random Sample Consensus (RANSAC) [10] to estimate
the transformations from the image under consideration to
a manually chosen reference image. A similarity transfor-
mation is assumed, which models lateral translation as well
as scaling and rotation.

If the number of features is too low for a given image,
this is indicative of a patient blink, saccade, or other image
deterioration. Using a minimum SIFT feature count, poor
quality images are automatically detected and discarded.

Gradient Fusing (Luminance). To obtain the enhanced
retinal view, we first convert the stack of images to the
YCbCr color space. In this representation, the Y channel
contains the luminance of the image (which is independent
of color), while the Cb and Cr channels contain chrominance
(color) information. Let Yn(i, j) denote the luminance of a
pixel at row i and column j, within image n of this regis-
tered stack. For each image n we calculate the pixel-wise
horizontal and vertical gradients, gx and gy, as follows:

gx(i, j)n = Yn(i, j + 1)− Yn(i, j),

gy(i, j)n = Yn(i+ 1, j)− Yn(i, j). (1)

To reduce image noise, we take stack-wise medians of the
gradients at each pixel location as an initial estimate for
the fused luminance gradients. Let this estimate be denoted
gmed
[·] . This is done independently for the x and y gradients,

where g[·](i, j)n denotes an x or y gradient for image n:

gmed
[·] (i, j) = median

n
(g[·](i, j)n). (2)

Taking the medians in this way rejects outliers, however,
having outliers in the final fused luminance may be desir-
able if one portion of the retina is well exposed in only a
small subset of the captured images. To account for this, we
also calculate an alternate estimate for the fused luminance
gradients, g∗. This estimate relies upon a local image qual-
ity metric which uses gradient magnitudes. Let the gradient
magnitude ‖g‖ at pixel (i, j) be defined as:

‖g‖ :=
√
g2x + g2y. (3)

We then define a local image quality metric, qn(i, j), to be
11 × 11 patch-wise averages of ‖g‖, using patches centered
on (i, j). Let n∗(i, j) correspond to the image with highest
quality from the stack, at a given pixel:

n∗(i, j) = arg max
n

(qn(i, j)). (4)

We find g∗[·](i, j) by selecting the gradients associated with
image n∗ from the stack, at pixel (i, j). However, to reduce
susceptibility to noise in g∗ we also average in the gradients
from pixel (i, j) of image n if, n ∈ N where:

N = {n∗(i+ δi, j + δj) :
√
δ2i + δ2j ≤ τ}, (5)

where τ is a fixed spatial radius. We term the method used
to estimate g∗ trust-based averaging. It has the effect that
gradients are only averaged between images if the pixel (i, j)

is in a region where other images from the stack are also
marked as trustworthy (selected by n∗) – exactly as would
occur in the presence of noise. If, however, n∗ were to indi-
cate that image n was the only trustworthy image over an
area, then no averaging would be done, the gradients from n
would be selected directly as the estimate g∗, and the region
would not be deteriorated by inferior image information (say
from images where that area was underexposed).

We combine the two estimates gmed and g∗ by averaging
to obtain ĝ[·], the final luminance gradient estimates:

ĝx(i, j) =
gmed
x (i, j) + g∗x(i, j)

2
,

ĝy(i, j) =
gmed
y (i, j) + g∗y(i, j)

2
. (6)

We pass ĝx and ĝy into a 2D Poisson solver (Neumann
boundary conditions) developed by Agrawal et al. [1, 2] to

determine Ŷ (i, j), the resulting luminance image intensities.
Intensity Fusing (Chrominance). To bring color infor-

mation into the fused result, we again perform trust-based
averaging, but now on Cbn(i, j) and Crn(i, j), the chromi-
nance channel intensities of the registered image stack. Us-
ing trust-based averaging retains color information only from
well exposed regions of the stack, without introducing color
artifacts due to noise. We use the same quality metric and
averaging scheme as was used for estimating g∗, but choose
τ to be larger here. This yields fused chrominance values

Ĉb(i, j) and Ĉr(i, j).

The final fused image, composed of intensities Ŷ, Ĉb, Ĉr
at every pixel, is then converted back into RGB for display.
The results of fusing are summarized in Figure 5(b).

2.3.2 Seamless Retinal Field Stitching
After fusing the different retinal views obtained, we stitch

overlapping views together. We first register the views to one
another, then adaptively stitch only the areas which are well
exposed in each view. Here, however, we must take care to
prevent image artifacts from being stitched, as these areas
can have high gradient magnitude scores. We repeat the
blood vessel based registration from Section 2.3.1 to obtain
the transformations from one view to the next.

Gradient Stitching (Luminance). After registration,
we have a montage of overlapping retinal areas. However,
some areas are better resolved in some views than in others,
and in some views, a specularity or other imaging artifact
may be present. These artifacts should be avoided in the
final reconstruction. For these reasons, we again use a gradi-
ent magnitude based metric to quantify local image quality,
as was done in Section 2.3.1, but we now apply a weighting
to penalize peripheral pixels from each view.

We first concern ourselves with just the luminance chan-
nel of the montage. We apply a weighting function wn(i, j)
to qn(i, j), the gradient magnitude based metric. This pe-
nalizes a pixel’s quality measure based on its distance from
the center of the field-of-view which produced it. We use a
2D Gaussian to perform this penalization. This gives a new
quality metric q′n(i, j):

q′n(i, j) = wn(i, j)qn(i, j). (7)

As before, let n∗(i, j) be the image with highest quality
at a given pixel:

n∗(i, j) = arg max
n

(q′n(i, j)). (8)



(a) Matched filter response with SIFT feature matches shown.

(b) Registered, stitched and blended retinal fields.

Figure 6: Stitching of two fused retinal fields, with
overlap below 22%.

We then apply trust-based averaging (see Equation (5)) us-
ing the new metric n∗, on the gradient magnitudes gx(i, j)n
and gy(i, j)n to obtain gradient estimates ĝx and ĝy. The

estimate Ŷ (i, j) is found using ĝx and ĝy as was done in
Section 2.3.1.

Intensity Stitching (Chrominance). We bring color
information into the stitched result by averaging the Cb and
Cr channels where possible. However, in this case, color
must remain consistent from view to view to prevent the
appearance of stitching artifacts.

If a pixel (i, j) is seen in more than one view, then the
chrominance values assigned to it are the normalized weighted
average of the chrominance values from the overlapping views
at that pixel, where Cbn(i, j) and Crn(i, j) are the chromi-
nance values from view n. For a given pixel (i, j) present in
multiple views M , the chrominance values are computed as
follows:

Ĉb(i, j) =

∑
n∈M

(wn(i, j)Cbn(i, j))∑
n∈M

(wn(i, j))
,

Ĉr(i, j) =

∑
n∈M

(wn(i, j)Crn(i, j))∑
n∈M

(wn(i, j))
, (9)

where wn is the same 2D Gaussian weighting function pre-
viously used for gradient domain stitching of the luminance
channel. The result is faithful color blending from view to
view, shown for two views in Figure 6(b), and shown for the
full panorama in Figure 8.

3. SYSTEM PERFORMANCE

Table 1: Prototype Summary

Size 19 cm× 14 cm× 20 cm

Weight 0.98 kg

Composite Field-of-view > ±45◦

Retinal Resolution 23.5µm

Acceptable Patient
Refractive Error −6 D ↔ +13 D

Illumination Time
On Single Charge 68 min

3.1 Data Collection
The retinal imagery shown in Figures 1, 4, 5, 6 and 8

was collected in-vivo from a single, healthy volunteer under
an IRB approved research protocol, and is meant solely as
system proof of concept. More comprehensive clinical trials
showing the efficacy of the system for remote disease detec-
tion under varying operating conditions comprise our future
work.

The apparatus was operated by a volunteer with no med-
ical background and no prior practice capturing retinal im-
ages, under the supervision of the primary author. The
smartphone and support electronics were charged prior to
each imaging session, and ran solely off battery power while
acquiring data. The entire system was mounted on a com-
modity camera tripod. The subject and the operator were
seated for the imaging session. The subject was strapped
into the faceplate and instructed to look at the fixation stim-
uli. The operator was shown the controls, and instructed to
try to find the retina at each fixation position, taking images
once the system was aligned. The collection of images was
then transferred to a computer and processed using Matlab.5

3.2 Composite Field-of-view
The composite field-of-view given in Table 1 was measured

from the stitched output shown in Figure 8. We assume a
spherical retina, then calculate the angle subtended by the
optic disc. Using measurements from Jonas et al. [11] and
Atchison et al. [3] we estimate that the optic disc subtends
9.8◦. We use this to estimate visible field-of-view.

3.3 Retinal Resolution
To estimate the achievable retinal resolution, a mock eye

was created and imaged: A single lens ophthalmoscopy model-
eye with 5mm pupil, 51.2 mm focal length, and planar retina
was used. The original retina was removed and replaced by
a reflective, negative USAF-1951 test plate (Edmund Op-
tics, 36-408) placed atop a backlit white diffuser. Because
the focal length of the model-eye, fmodel, is different from
the focal length of the human eye, fhuman, we calculate the
following paraxial magnification:

m =
fmodel

fhuman
. (10)

5The transferring of files to a computer does not restrict the
utility of the system, as cloud-based processing and wireless,
encrypted file transfer are now commonplace.
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compensation was done for every image by the smartphone’s
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Figure 7: Imaging performance on a magnification
corrected model-eye with USAF-1951 planar retina.

And use it to map physical distances from the test plate,
dmodel, to the human retina, dhuman:

dmodel

m
= dhuman. (11)

The focal length of the Gullstrand 1 Relaxed eye model,
17.185 mm [17], was used for fhuman, meaning m = 2.979.
This scaling factor was applied to calculate human retinal
spatial frequencies from the spatial frequencies physically
present on the target.

The Modulation Transfer Function (MTF) of the system
was calculated by imaging this mock eye. We followed the
technique used by Broxton et al. [6] to automatically calcu-
late the MTF for a given image of the test target. Modula-
tion or contrast is expressed as:

Imax − Imin

Imax + Imin
= contrast, (12)

where Imax corresponds to the 8-bit grayscale intensity of
the average of the 3 maxima along a line perpendicular to
and centered within the set of bars in a given Group/Element
pair, and Imin corresponds to average of the 2 minima be-
tween those maxima. The resulting MTF is plotted in Fig-
ure 7(a). Spatial frequencies (line widths) beyond which the
MTF drops below 10% we declare as not resolvable.

3.4 Acceptable Patient Refractive Error
To test how well the system is able to compensate for pa-

tient refractive error using the smartphone’s built-in auto-

focus functionality, we repeated the test outlined in Section
3.3, but now with different trial lenses placed in front of the
model-eye. These simulate different degrees of refractive er-
ror. For example, when the mock eye is augmented with a
−5 D trial lens, this represents a far-sighted, or hyperopic
patient, requiring +5 D corrective lenses. The result of this
analysis for a variety of trial lenses is shown in Figure 7(b).

We find the range of acceptable refractive errors by find-
ing for what trial lenses the MTF of the system falls below
10% at 23.5µm line width. We see that the system can com-
pensate for refractive error anywhere from −6 D (myopic) to
+13 D (hyperopic) on the model-eye.

4. CONCLUSIONS
In summary, we have designed, fabricated and demon-

strated a portable yet robust, smartphone-based retinal imag-
ing system. It enables the acquisition of multiple retinal field
positions; takes advantage of the smartphone’s autofocus to
correct for patient refractive error; and utilizes computa-
tional imaging to reduce image noise, enhance image con-
trast, find retinal blood vessels, and seamlessly stitch to-
gether overlapping retinal fields all while rejecting unwanted
imaging artifacts.

We believe this computational ophthalmoscopy system lays
the foundation for mobile retinal screening systems which
generate diagnostically meaningful imagery and are truly
portable, robust, and easy-to-use: exactly the force-multiplier
ophthalmologists need to remotely deliver healthcare in de-
veloping and underserved areas.
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