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Abstract

Effective management of asthma and other respiratory
diseases requires constant monitoring and frequent data col-
lection using a spirometer and longitudinal analysis. How-
ever, even after three decades of clinical use, there are very
few personalized spirometers available on the market, espe-
cially those connecting to smartphones. To address this prob-
lem, we have developed mobileSpiro, a portable, low-cost
spirometer intended for patient self-monitoring. The mobile-
Spiro API, and the accompanying Android application, inter-
faces with the spirometer hardware to capture, process and
analyze the data. Our key contributions are automated algo-
rithms on the smartphone which play a technician’s role in
detecting erroneous patient maneuvers, ensuring data qual-
ity, and coaching patients with easy-to-understand feedback,
all packaged as an Android app. We demonstrate that mo-
bileSpiro is as accurate as a commercial ISO13485 device,
with an inter-device deviation in flow reading of less than
8%, and detects more than 95% of erroneous cough maneu-
vers in a public CDC dataset.

Categories and Subject Descriptors
J.3 [Computer Applications]: Life and Medical Sci-
ences—Cellular computing

1 Introduction

Asthma is a major problem globally, especially among
children [1]. One of the biggest challenges for asthmatics is
preventing a serious attack in which the patient lung capac-
ity is significantly diminished, leading to severe shortness of
breath and emergency treatment. In most cases, the degra-
dation of lung capacity occurs over a prior period of two to
four days and is detectable if patient’s lung capacity can be
measured daily.

Such daily measurements can be taken using a spirome-
ter, which also provides many indices of respiratory health.
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However, even with more than three decades of clinical use
and numerous studies demonstrating that daily spirometry
readings can predict impending asthmatic episodes accu-
rately [2], there are almost no spirometers in the market for
patients to monitor themselves.

One reason for lack of patient-operated spirometers is the
high chance of error in performing a test. The forced expi-
ratory maneuver, a standard test in spirometry, appears quite
straightforward. In this maneuver, the patients inhale to com-
pletely fill their lungs and then exhale as forcefully as pos-
sible for as long as possible into the spirometer. However
any error in the maneuver, such as less-than-maximal effort,
invalidates the reading. Additionally, erroneous readings can
lead to false alarms and unneeded visits to the doctor.

In this paper, we present mobileSpiro for performing
spirometry at near-lab accuracy by end users. There are
three main components of mobileSpiro: (a) custom spirome-
ter hardware which is small-factor, low-power and very low-
cost to enable an affordable end-product, (b) a custom API
to allows any Android device to interface with the spirometer
via Bluetooth, allowing for development of patient-care ap-
plications and (c) robust error-detection algorithms enabling
effective patient self-monitoring.

Our hardware solution is as accurate as a commercially
available spirometer (all priced at more than $500); our cus-
tom hardware component costs are no more $100 in large
quantities. In addition, our error-detection algorithms can
detect over 95% of coughs and 74% of early termination ma-
neuvers. Such automated error detection allows for higher
quality in-lab spirometry measurements and enables patient
self-monitoring.

The rest of the paper is organized as follows. We will first
describe the current state of asthma monitoring in Section 2.
Next, we detail the mechanics and possible errors of a forced
expiratory maneuver (Section 3). Lastly, we illustrate how
our architecture addresses the spirometry maneuver errors
(Section 4) and demonstrate its effectiveness in Section 5.

2 State of the Art

Our work is inspired by the paradigm that health man-
agement is a shared responsibility of the patients and the
care provider. Remote monitoring technology in general has
been shown to improve patient outcomes, because the pa-
tients themselves gain greater knowledge about what symp-
toms they need to take care of.



In [3], the authors demonstrated that electronic journal-
ing, where the asthmatic patients have to choose one of sev-
eral options, leads to improved compliance by patients in
tracking their health condition. In addition, it was shown
in [4] that spirometry self-testing through an Internet envi-
ronment is comparable to validity as a technician-monitored
spirometry test session. The experiment was conducted on
subjects with no computer background, showing that this
technology is usable by people of all backgrounds.

However, these encouraging results have not translated
into the larger practice of self-management of asthma at
home. Currently, children with moderate to severe asthma
rely on infrequent visits to a physician, typically in the range
of two to four times a year [5]. However, the physician does
not know of the child’s status in between visits unless some-
thing major happens to the child, such as a severe asthma
attack resulting in an emergency room visit. One of the ma-
jor reasons is lack of cost-effective and personalized asthma
management tools [6].

With mobileSpiro, we plan to address all the major short-
comings in developing an end-to-end solution. mobile-
Spiro’s combination of low-cost, accurate hardware, soft-
ware with automated patient feedback, a journaling system
and open-source API ensures high-quality spirometry data
and enables new applications for user engagement.

3 Spirometry Basics

Spirometry is the most common way to measure lung ca-
pacity of a patient. Breathing at rest does not utilize the full
capacity of the lungs; at-rest tidal volume is limited to a small
fraction of total capacity. As the lungs are not at their limit,
declining lung function symptoms are not noticed until there
has already been severe degradation. Spirometry is meant
to highlight the decline in function by forcing the patient to
expel the maximal volume possible with maximal effort, al-
lowing doctors to detect the early onset of both restrictive
and obstructive diseases.

3.1 Spirometry Maneuver

In the forced expiratory maneuver, the patient inhales as
much as possible and then exhales into the spirometer as hard
as possible for as long as possible. Throughout the maneu-
ver, the output flow of air and the total volume of air exhaled
thus far is measured and recorded. In addition to providing
many predictive indices of respiratory health, such data can
be used to construct a flow vs. time curve useful for diagnos-
ing respiratory diseases.

The correct maneuver (Figure 1) is characterized by:

e Beginning the maneuver with maximal blast effort
e Applying maximum effort throughout the maneuver

e Keeping a tight seal on the spirometer mouthpiece to
avoid leaks

e Avoiding variability in output flow, such as breaks

e Completing the maneuver in one continuous breath
The acceptability of a maneuver is determined not only
by the shape of the spirogram but also by certain parameters
obtained from each maneuver (Figure 2). These include:
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Figure 1. Ideal maneuver with possible errors

e FVC (Forced Vital Capacity): the total volume of air
exhaled during the expiratory phase of the maneuver.

e FEV1 (Forced Expiratory Volume After One Second):
the total volume of air exhaled one second into the ma-
neuver.

e PEF (Peak Expiratory Flow): the maximum recorded
flow during the course of the maneuver.

e FEVI1/FVC Ratio: the ratio of the FEV1 to the FVC of
any maneuver. An acceptable ratio is above 0.85.
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Figure 2. Spirogram parameters annotated on a sample
graph

A correct maneuver requires maximal effort, a support-
ive environment, and most importantly a good state of mind.
Ideally, the patient assumes the same position in all maneu-
vers; standing is preferred. The patient must wear loose
clothing so that their lungs and airways are unconstricted.
Lastly, patients should be not allowed to smoke or eat within
an hour of performing a maneuver.

3.2 Erroneous Maneuvers

Although spirometry provides powerful diagnostic in-
dices, the slightest mistake can invalidate a spirometry ma-
neuver. The following errors are the most common and im-
portant errors identified in spirometry tests.

Cough: When a patient coughs into the flow tube, the
aberration caused is very prominent in the spirogram. The
detection of a cough in the spirometry maneuver is based on
a simple principle: there should be one peak flow which is
both maximum locally and globally. That is, the shape of the
spirometry curve should contain only one sharp peak. The
flow should be strictly increasing until the single peak expi-
ratory flow is reached; afterwards, the flow should be strictly
decreasing. Therefore, the detection of cough is based on the
extent to which these conditions are defied. A comparison of



a cough maneuver with the ideal is shown in Figure 1.

Hesitation and Slow Start: In this error, the patient does
not start with the maximum blast effort. In the spirogram, the
rise of volume with respect to time is not steep enough. To
check this, if the peak expiratory flow (PEF) occurs at a vol-
ume larger than 0.7 L, hesitation occurred [7]. Slow starts
are also bound to occur when there is excessive extrapolated
volume. These two conditions go hand in hand, and the pres-
ence of either indicates a slow start. An example maneuver
is shown in Figure 1.

Early Termination of Maneuver: A maneuver is said
to be incomplete if one of two conditions are met: glot-
tis closure or short-lived maneuver. Glottis closure, as the
name implies, occurs when there is complete loss of flow
when the glottis or epiglottis suddenly closes. This appears
as a plateau in the volume or a sudden drop in flow to zero.
Short-lived maneuvers are maneuvers that do not last the full
required six seconds; in this case, the patient ceases expira-
tory effort before the six second mark. Both glottis closure
and short-lived maneuvers are seen in Figure 1.

4 mobileSpiro Architecture

The mobileSpiro architecture has three main compo-
nents. The first is the hardware, which samples, collects,
and filters the raw data for transmission to the Android de-
vice. The second is actual recording of the spirometry ma-
neuver, in which raw sampled data is converted into flow
measurements as per the calibration. Lastly, the third is the
high-level spirometry maneuver analysis system, where the
recorded spirometry maneuver is processed by validation al-
gorithms to determine which errors, if any, are present in the
maneuver. The overall system is depicted in Figure 3.
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Figure 3. System Architecture

4.1 Hardware Design

Our approach was to leverage existing technologies to
encourage adoption. Smartphones are rapidly pervading all
levels of society and have the necessary computing power to
process raw data and run data analysis algorithms. There-
fore, respiratory monitoring would simply require a low-cost
sensor. The hardware architecture is shown in Figure 4.

The spirometry hardware is responsible for data collec-
tion. To maximize patient convenience, the two design goals
were (1) low-power consumption and (2) portability. We
chose to use replaceable batteries as the power source, so
that the end-user would not have to wait for any recharging.
The actual hardware is shown in Figure 5; the black box is
the custom spirometer, and the white tube is the laminar flow
tube, which reduces the turbulence of the air flow.
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Figure 4. mobileSpiro Hardware Architecture

At the front end for data capture is a pneumotachometer,
which converts a stagnant pressure input to an analog out-
put. Our hardware uses a Freescale MPXV7002 which has
a range of £0.7 psi. The sensor is bidirectional, enabling
the capture of both exhalation and inhalation flows. The ana-
log output varies between 0 V and 5 V with zero pressure at
25V

The maximum input bandwidth is no more than 1 kHz;
to filter out noise components, a simple RC-filter is imple-
mented after the input. The components (750 Q, 0.33 uF)
have a cutoff frequency of 1 kHz. The pressure sensor range
is +0.7 psi, which is larger than needed for a human spirom-
etry maneuver; therefore, an amplification factor of 6 is ap-
plied prior to digital sampling.

A Texas Instruments MSP430F5437 samples the data at
1 kHz and transmits the raw samples to the Rayson BTM-
182 Bluetooth module. The Bluetooth module is a UART
connection at 115 kBaud. The 12-bit sampled data is sent
as two separate words with the first 4 bits of the first word
indicating a data byte. The data received at the smartphone
is processed by low-level Linux drivers as part of the An-
droid Bluetooth stack. The software checks for the 4-bit
sequence in alternate receptions to ensure synchronization
with the custom hardware. The data is made available to the
calibration and validation subsystems at the higher layers;
Section 4.4 describes the Android processing stack in detail.

1 T

Figure 5. Actual mobileSpiro Hardware: The mobile-
Spiro processing block and laminar flow tube.

All parts used in the spirometer are standard off-the-shelf
components, with higher tolerances, significantly reducing
the cost of the design. Also, the PCB design is compact,
further reducing the assembly cost.

The input to the pressure sensor is an off-the-shelf lami-
nar flow tube. The turbulent airstream is laminarized by the



tube to attain a linear relationship between pressure and flow.
It creates a stagnant pressure column based on the flow rate;
thus, the pneumotachometer output is directly proportional
to the input flow rate. Hardware calibration is performed to
ensure accuracy of flow rates using the methodology men-
tioned in [8]. The procedure involves linear regression with
data from a 3 L calibrated syringe. Over 20 plunges of the
syringe at slow, medium and fast flow rates are collected and
used to determine a third-order mapping of digital samples
to calibrated flow rates.

Power Utilization: The custom hardware is powered by
two AA batteries. The batteries output a voltage of 3.1 V
when charged and 1.8 V when drained. There is a boost reg-
ulator which generates 5 V and 3.3 V for the digital system.
As per the datasheets, the Bluetooth module is the dominant
power sink in the system, drawing up to 60 mA when trans-
mitting. The pressure sensor draws up to 10 mA, and the
MSP430 requires less than 1 mA when running in low-power
mode.
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Figure 6. Power Consumption of Spirometer Hardware

The actual power utilization of the system is shown in
Figure 6. The graph plots power draw from the AA batteries
with varying sampling rates of the data. As sampling rate
increases, the power consumption increases, as the MSP430
must remain awake longer. However, this incremental de-
crease is small compared to the total power draw. As the
Bluetooth module must remain active during data collection,
it dominates the power consumption.

For a sampling rate of 1 kHz (the upper limit expected by
ATS), the draw is 94 mA. If the device is used twice daily
for up to 10 minutes each, standard 2500 mAh batteries will
last for up to 80 days.

4.2 Software Design

The spirometer software is a pure Java API (shown in
Figure 7), built for use on the Android platform. It includes
software packages useful for interacting with the spirometer
hardware and for analysis of spirometry maneuvers.

The first layer of the API stack is the collection of data
from the sensor. Because Android devices have differing
availability of Bluetooth, mini-USB, and microphone input,
the data service is interchangeable. In addition to the hard-
ware RC filter, each implementation of the top-level spirom-
eter interface defines its internal own digital filter as well.
Essentially, the digital filter is responsible for translating the
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Figure 7. Java API

incoming raw pressure values, which represent only relative
quantities, into calibrated, meaningful flow values.

The top layers of the API stack focus on storage and
analysis of the obtained spirometry maneuver itself. Each
spirometry maneuver can be stored and associated with pa-
tients in a built-in SQLite database. On the analysis end, im-
portant modules include the interchangeable validation mod-
ule, which defines the strictness of validation of maneuvers
as well as the algorithms used to evaluate the maneuver.
Such flexibility is necessary for adapting the spirometer for
use among different demographics; for example, it is recom-
mended that children be held to less rigorous standards in
validating acceptable spirometry maneuvers [9]. Lastly, ap-
plications can register themselves as listeners on the spirom-
eter input, allowing for seamless integration with the hard-
ware. The end result is a cohesive package that enables rapid
development of Android applications making use of the mo-
bileSpiro hardware. We profile our own development of an
asthma journaling application, which makes full use of the
mobileSpiro API.

4.3 Spirometry Validation Algorithms

In a clinic, technicians or doctors can monitor spirom-
etry maneuvers to ensure their accuracy. In contrast, when
patients operate their personal spirometer, we open the door
to erroneous maneuvers which do not accurately reflect the
patient’s lung function. To address this problem, we imple-
mented real-time algorithms in the software, which validate
each maneuver. For each maneuver, we check for the fol-
lowing errors: a cough, hesitation, glottis closure, and short-
livedness. Each of these errors manifests itself in the flow-
time and volume-time curves.

Cough: As seen from the graphs in Section 3.2, a cough
is characterized by a sudden drop succeeded by a rise in flow.
The cough detection algorithm works by finding all local
maxima in the maneuver. Because there is only one peak
(the peak expiratory flow) in the flow-time curve of an ideal
spirometry maneuver, the presence of more than one local
maximum indicates that a cough occurred. If a local maxi-
mum other than the PEF exists and differs from the PEF by
more than 0.6 L/s, then the algorithm detects a cough. The
0.6 L/s value was determined experimentally based on ob-
served noise levels in our hardware.

Early Termination of Maneuver: In a short-lived ma-
neuver, the flow drops to zero before 6 seconds after the peak
expiratory flow is reached. However, as discussed in [9], that



Feedback

“Try to avoid coughing.”
“Start faster, without hesita-
tion: exhale as forcefully as
possible from the start.”
“Keep on blowing air out.”
“Try again; keep on blowing
air throughout the entire ma-
neuver.”

Table 1. Feedback from Validation System to User

Error
Cough
Hesitation

Short-lived maneuver
Glottis closure

is often difficult for children, so we use 5 seconds. This is
checked by looking for the last group of meaningful values
above 0.5 L/s (to avoid errors due to noise). If that group
of values is less than five seconds from the start of the ma-
neuver, it is classified as short-lived. If the slope of values
dropping off is greater than 70 degrees, it is classified as a
glottis closure.

The performance of these validation algorithms is studied
in Section 5.2.

4.4 Patient-feedback System

The software is intended to allow the patient to accurately
self-track symptoms and monitor their asthma, in conjunc-
tion with a physician monitoring their performance. When
the new test subject is entered into the Android software, the
patient is greeted by two options: whether to take a new test
or to view their recent history. Currently, the patient is stored
locally on a database, but server-side implementations would
allow for greater flexibility in patient data access. The data
capture and validation algorithms are both packaged into an
Android app distributed with the hardware.

When the patient chooses to take a new test, an automated
spirometry test session is launched. When the software has
established a connection with the sensor, the message “begin
when ready” is displayed, prompting the patient to begin the
spirometry maneuver at his or her discretion. The software
displays a real-time graph of flow and volume versus time,
which serves to motivate the patient to give his or her best
effort. Real-time displays of peak expiratory flow and forced
vital capacity are also displayed as the maneuver progresses.
Up to a third of a second’s worth of data before the begin-
ning of the maneuver is also logged in order to preserve the
maneuver’s entirety, depending on how quickly the patient
begins the maneuver.

Lastly, when the software has detected the end of the ma-
neuver (defined here as 1 second of flows between +0.1 L/s,
due to the presence of noise), the software logs the data and
then brings the patient to a new screen where they can re-
view the results of their test. On the left, the patient feed-
back section is displayed. Should an error be detected, an
appropriate coaching message is displayed, and the patient is
given the option of re-doing the test. For example, if a cough
was detected, the software displays “Try to avoid coughing”.
Such coaching messages are described throughout spirome-
try literature, and we have chosen the ones most suitable for
patient self-monitoring [7]. All the feedback messages are
shown in Table 1.
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Figure 8. Screenshot of Feedback View

During the “review test” stage, checkboxes display a set
of common asthma symptoms, allowing patients to quickly
and accurately describe their respiratory condition. Captur-
ing this metadata is extremely valuable, as declines in lung
function involve both a qualitative increase in symptoms and
a change in quantitative factors, such as a decrease in peak
expiratory flow over time. The patient can also write notes
about their test.

On the recent history view screen, several status indica-
tors immediately indicate the current performance of the pa-
tient. One of the most important indicators is the rolling 15-
day history graph. Depending on the patient’s recent perfor-
mance in spirometry tests, the graph is shaded with a differ-
ent intensity of either green, yellow, or red. The performance
of the patient is based primarily on the current model of peak
flow monitoring, that of being in the green, yellow, or red
zone [2]. The software informs the patient which zone they
are in and can also prompt the patient to take steps based
on their action plan. In the future, the performance of the
patient could be categorized using more sophisticated mea-
sures or integrated with other medical sensors to provide a
more personalized portrait of current health.

Since poor performance in any test may result from any
number of factors, ranging from simple operator error to
symptoms of asthma, the patient is given the option either
re-doing the test or saving the test result if any error is de-
tected in the maneuver. However, if the test is saved and
contains any error, the maneuver will be flagged appropri-
ately if submitted for later, external review.

S Full System Evaluation

The hardware and validation algorithms are evaluated for
their accuracy against well-known systems. First we test the
output accuracy of the hardware against an ISO13485 ap-
proved device. To test the validation algorithms, we run the
same algorithms against the CDC released NHANES III [10]
spirometry data set. The database has been annotated by both
a technician and a computer so we can benchmark our vali-
dation performance against those results.

5.1 Hardware: Sensor Accuracy

To determine the accuracy of the sensor, we bench-
marked our calibrated mobileSpiro hardware with the
1SO13485-certified Thor PC FlowMeter. By comparing the
flow values reported from the FlowMeter and our spirom-
eter over a range of flows, we were able to determine the



P Det | P_FP
Cough 95.5% | 15%

Early Termination | 74% 14%
Table 2. Algorithm Evaluation

accuracy of our mobileSpiro sensor values as compared to
an established commercial spirometer.

In this experiment, the air source was a pressure pump;
the air was piped from the pump to the laminar flow tube
through a long coil of tube intended to laminarize the flow.
Because the air from the pressure pump itself was quite tur-
bulent, this coil of tube was necessary to control the flow’s
degree of turbulence. By adjusting the pressure of the pump,
it was possible to vary the speed of air flow through the
spirometer. For each different flow supplied by the air pump,
we alternately fitted our hardware and the Thor PC FlowMe-
ter to the end of the long coil of tube. Therefore, the flow
value was kept constant, and we were able to compare the
accuracy of our calibration versus a commercial medical de-
vice.
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Figure 9. Results of benchmarking experiment: devia-
tion from FDA-approved device versus the flow rate.

In Figure 9, we show the maximum inter-device devia-
tion in reported flow values. With increasing flow rate, the
deviation between our custom hardware and the FlowMeter
never exceeds 8% across 0 L/s to 6 L/s. Because the control
to the air pump was very coarse and the variability of flow
increased as the flow increased, we were unable to obtain
higher resolution in our benchmarking.

5.2 Algorithms: Accuracy of Error Detection

In this experiment, spirometry datasets were taken from
the NHANES III database [10], a rich source of spirome-
try information. The raw curves were extracted from the
database file and run through the validation algorithms. Each
NHANES curve is annotated with a technician and computer
score on the validity of the maneuver. Table 2 summarizes
the results.

Cough detection: For cough detection, all maneuvers
which were tagged as a cough by the technician and by
the NHANES computer software were extracted from the
NHANES III dataset. These maneuvers were run through
our validation algorithm. 95.5% of the maneuvers were ac-
curately detected as coughs. The algorithms also had a 15%
false positive rate for the NHANES maneuvers that were

marked as good.

Early Termination: Selecting the subset of the database
from the NHANES with the ‘early-termination of expiration’
error reasoning from the NHANES computer, our early ter-
mination algorithms successfully detected 74% of the errors,
while the false positive rate is just 14%.

We tried to validate the algorithms for hesitation as well
but due to inconsistent labeling of the NHANES III dataset,
we were unable to extract the maneuvers that correspond to
hesitation in reality.

Overall, the software algorithms substitute well for a
technician in the self-monitoring scenario.

6 Conclusion

In this paper we presented mobileSpiro, a new portable
smartphone-connected hardware spirometer. To alleviate the
requirement of a trained technician, the mobileSpiro auto-
mated system checks the maneuver quality as the data is
collected. Our algorithms successfully identify over 95% of
coughs as tagged by a CDC database. Additionally, we can
successfully capture early-termination maneuvers. All this
ensures that longitudinal data collected daily by the patient
is accurate and can be used for clinical diagnosis.
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